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Abstract: In this article the primary segment of an antiprismatic pop-up mast is analyzed, that can be 
applied for largely flexible architectural designs, like deployable bridges or transportable look-out towers. 
This deployable column, consisting of rigid plates, rigid and elastic bars, is characterized by its self-
deploying behavior due to the energy accumulated from lengthening the elastic bars during packing. The 
main goal of this paper is to prepare the analysis of the complex structure by a herein detailed investigation 
of the behavior of one, basic element of the deployable mast. After the analytical examination of the 
general behavior of the basic segment a geometrically nonlinear finite element formulation is used to 
trace the force-displacement diagram. Besides the parametric study, approximations of main mechanical 
parameters are herein given for facilitating preliminary design of such deployable structures.

Keywords: deployable structure, antiprismatic structure, non-linear analysis, Yoshimura pattern, 
instability analysis

1. NOMENCLATURE
� �  height of both antiprisms of the basic unit in the reference (initial, deployed) state � �� height of both antiprisms of the basic unit in the actual state � � radius of the horizontal polygons in the reference (initial, deployed) state � �� radius of the horizontal elastic polygons in the actual state � � number of the vertices of the horizontal polygons of the antiprism � � � 	
��
� half of the inner angle of the horizontal polygons � �� length of each horizontal bar in the reference (initial, deployed) state � ��� length of the elastic horizontal bars in the actual state � �� length of the rigid bracing bars � � � �����  stretching of the elastic horizontal bars during packing � ���� maximal stretching of the horizontal bars (in the completely packed state) � � total packing force applied at the top polygon of the basic unit � �� � �
� packing force applied at each vertices of the top �-gon of the basic unit 
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2. INTRODUCTION

An antiprism is a polyhedron composed of two parallel, identical polygons connected by 
triangles. Antiprisms are similar to prisms except the two polygons are twisted relative to each 
other and thus the lateral faces are not quadrilaterals but triangles (Fig. 1). A regular antiprism 
is formed with a 180/n degree of twisting angle between the two n-sided polygons. Concerning 
mechanical behavior of space truss systems generated from the edges of a regular antiprism the 
results are rather fascinating. Tarnai had shown that a space truss generated from even sided 
regular antiprism is a finite mechanism while the ones from odd sided antiprisms are stiff forms 
[1]. Nevertheless, by building stiff truss units (formed from odd sided antiprisms) on top of 
each other, forming a cylindrical truss, small displacements of boundary joints at the bottom 
grow exponentially along the height [2]. Consequently it is rather to be avoided to apply such 
regular antiprismatic trusses for conventional engineering applications without any additional 
stiffening. Nonetheless, this geometry can serve for the construction of a very interesting pop-
up mast. 

Figure 1. Regular pentagonal antiprism (a), deployable mast offered by Hegedűs [3](b)

The deployable cylindrical column offered by Hegedűs [3], shown on Fig. 1b, consists of 
rigid panels (octagonal panels in the figure) and rigid and elastic bars (drawn with continuous 
and dashed lines respectively). The mast is packed with pushing the top polygonal panel in 
the vertical direction. With a uniform cyclic symmetric folding the elastic bars are stretching 
out and the parallel polygonal panels are pushed together. It is true that the structure 
cannot be controlled by a single axial force [3], but with a careful symmetry control the 
structure can be packed to a theoretically planar truss. 

� �� tension force in the elastic horizontal bars during packing (actual state) � � strain in the horizontal elastic bars (actual state) � ����  height of both antiprisms of the basic unit in the critical state � ��� � �� �!  relative critical height of the segment  � ��� critical packing force (maximum value of �)� "# (linear) axial stiffness of the elastic bars 
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In this packed configuration the structure is in equilibrium without any external forces. 
This state of self-stress is not a stable position, consequently with a small perturbation 
the structure can snap back to the initial, deployed, strain-free configuration.

Figure 2.  Application of antiprismatic deployable system to flexible architectural designs: 
deployable bridge (a), transportable look-up tower (b) (graphical illustration by E. Kiss)

Though the system has been already offered more than 20 years ago, no detailed analysis 
has been performed to investigate general mechanical behavior of the structure. Taking into 
account the currently prospective research field of the architectural application of dynamical 
and adaptive structures (e.g. [4-6]), the exploration of this immature system could be forward-
looking. This geometry could be used for a pop-out bridge construction (Fig. 2a), or as well as 
to look-up towers (Fig. 2b) or other adaptive designs [7-9].

The main goal of this paper is to beat a path to the design of such complex structure. In 
the followings the basic segment of the offered self-deploying antiprismatic column will be 
analyzed with analytical and numerical approaches. Though the qualitative behavior of the 
main characteristics of the force-displacement diagram of the basic segment was already given 
in [3], nevertheless, it was also found in [7] that varying the parameters of the basic segment 
influences largely the global packing behavior of the complex mast, namely its snapping 
behavior during packing. For that a profound parametric study was carried out. Besides this 
analysis, some approximations are also given to facilitate preliminary design of such deployable 
structures.
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3. ANALYTIC INVESTIGATION

3.1. Kinematical equations

Figure 3. Planar and side view of initial (deployed) configuration (on the left) and final (packed) 
configuration (on the right)

Let’s consider one single deployable unit of the analyzed antiprismatic truss system built 
from two segments of height h, consisting of three, initially congruent regular n-gons with tangential 
circle of radius R (Fig. 3). The length of each horizontal bar in the reference, deployed state is

with

�� � $� %&'� 

� � 	
�°
� 

while the length of the rigid bracing bars is: 

�� � (�) * �) %&') � * +� , � -.%�/)0 � (�) * $�) +	, -.%�/ 

(2) 

(3) 
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The antiprismatic structure has asymmetric freedom of motions [3]. Despite this fact, from 
now on in the analysis only cyclic symmetrical packing will be considered. However, it is 
important to mention that the results deduced herein are only true in case of being able to 
control the movement of the structure in a way that this assumption is not violated.

During packing, the joints of the boundary polygons (the one on the top and the one on the 
bottom) are horizontally fixed, thus the length of their horizontal bars is constant. Furthermore, 
if we assume that the bracing bars are perfectly rigid (incompressible) and that the folding is 
uniform and has cyclic symmetry, the current length of the bars of the middle polygon stretches 
out during packing to:

           (4)

where  is the actual radius of the tangential circle of the middle, expanding polygon which 
can be determined with:

           (5)

The last term under square root corresponds to the length of bracing bars projected to the 
radius, and denoted with  in Fig. 3.

The stretching during packing is:

           (6)

In the completely packed configuration the bars of the middle polygon stretch out to the length:

           (7)
where

The last term refers to the angle between the fixed polygonal bars and the bracing bars 
(denoted with  on Fig. 3) in the completely packed configuration.

Equation (7) can also be written from equation (4) and (5) by substituting :

           (8)

The final stretching of the polygonal bars:

           (9)

���+��/ � $�� %&'� 

��+��/ � � -.%� * 1��) , +��/) , �) %&') �2CCCCCCCDCCCCCCCE��
� � -.%� * (�) , +��/) * �)+	 , -.%�/)

�+��/ � ���+��/�� � !�+��/! � 0 -.%� * 14�!5) , 4��! 5) * +	 , -.%�/)0 

���6��78 � $�� %&' 9 

9 � :�° * � , ;-.%+�� $��< /2CCCDCCCE=

���6��78 � $��>��78 %&'� � 0$� -.%� %&'� * $ %&'�(�) * �)+	 , -.%�/)

���� � �>��78 � 0 -.%� * 14�!5) * +	 , -.%�/) 
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In practical design, when considering rational values of , equation (9) can reasonably 
be simplified to a linear connection (Fig. 4). The value of  is always small, and 
depends on the angle  that depends further on the number of the sides of the polygon,  (see 
equation (2)). It reaches its maximal value in the case of triangular antiprismatic segment. As 
for practical consideration triangular and even-sided antiprisms will be avoided, the maximum 
value is , which corresponds to a pentagonal unit. Let’s consider only a 
reasonable domain of :

          (10)

Even in the case of the minimal value of this domain,  will be one order 
greater than . Accordingly, for a preliminary estimation the latter one can be 
neglected, which leads to a simple linear approximation (Fig. 4) of equation (9):

          (11)

Figure 4. Linear approximation for final stretching of elastic bars (  ) of pentagonal (n=5) 
antiprismatic unit in function of the height-radius ratio ( )

(exact function (equation (9)) with continuous line ( ), approximation of stretching (equation 
(11)) with dotted line ( ), error of the approximation with dashed line)

The error of this estimation can be calculated from:

          (12)

�GI JJ �! J $0

� � � �

�H����� � 0 �! * --.%
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The maximum value of (12) is at the lower boundary of the domain (see Fig. 5), that is at 
 and obviously the more sides the polygon has the less the error is (see Table 1 and 

Figure 5) 

This simplified linear equation can serve for the preliminary stage of design and for a good 
verification of results coming from the numerical analysis. Nevertheless, using the simplified 
equation in the case of small  ratio (smaller than 0.5) the stretching is highly underestimated. 
This error in case of pentagonal unit reaches 10% for  which leads to a completely 
fallacious result giving compression in the bars instead of stretching.
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3.2. Equilibrium equation

Figure 6. Equilibrium of basic deployable unit

For packing the structure, a vertical force  is applied at the top horizontal polygon (Fig. 6) 
with a symmetrical distribution, that is, the load is  at each vertex. The elastic bars of 
the middle polygon are tensioned by the rigid bracings coming from the top and bottom facet of 
the unit. With the assumption of cyclic symmetrical packing this tension force in the bars is:

          (13)

Where  denotes the horizontal radial projection of the four compression forces coming 
from the bracings (Fig. 6).

3.3. Constitutive equation

For the sake of simplicity, only the hypothesis of linear elasticity will be assumed in the 
analytical approach, that is, the strain in the elastic polygonal bars is:

          (14)

where  denotes the stretching, that is, the ratio of actual extended length and initial length 
of the elastic bar.

��+��/ � )PQ R !�+��/S! TUVW��2CCCCDCCCCEX 
R Y) VZ[W  

�+��/ � �+��/ , 	 � X�+��/\]   
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3.4. Equilibrium path

Combining equilibrium (13) constitutive (14) and kinematic (5-6) equations, the force-
displacement diagram can be written in the form:

          15a)

Or in function of the displacement of the top nodes:

          (15b)

 

Figure 7.  Equilibrium path of basic deployable unit (equation (15b))

This equilibrium path is plotted in Fig. 7, and the diagram proves that the antiprism goes 
through an instable phase during packing, that is, after reaching the critical force or the critical 
height the increment of displacement of top nodes corresponds to a decrement of force. In 
practice this means, if no displacement control is carried out, after the critical force, the 
structure snaps to the final packed configuration.

�+��/ � ���+��/�� %&'���+��/ , � -.%� � �"#^�+��/ , 	_�� %&'���+��/ , � -.%� �0
�+��/ � �"# ��! %&'� ` TUVWSY

14ab5cS4a�b 5cd+YSTUVW/c * 	e  

�+f/ � �"# 4�! , g)!5 %&'� ` TUVWSY
14ab54hb5Sij4hb5cd+YSTUVW/c

* 	e  
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The force-displacement diagram of the three dimensional deployable unit could theoretically 
be continued if the top segment is pushed further and the structure ends up in a reversed, 
upside down version of its initial geometrical configuration which corresponds to zero force 
and is stable. This phenomenon is to be avoided for the analysis of complex structures because 
of the failure of complete packing. However, this kind of intersection of the elements during 
packing in practice is not really possible. Nonetheless another freedom of motion appears at 
the completely packed configuration. The folded bracings can flip together up [3] allowing 
the lengthened elastic bars relaxing (Fig. 8). This freedom of motion can not only happen 
theoretically but also in practice (see physical models in Fig. 8), consequently, careful joint 
design is to be performed to avoid this possibility. Analogously to the definition provided at the 
analysis of planar structures, these two phenomena (continuing in a reversed configuration and 
the flipping up of the bracings) will be furthermore called ‘post-packed phenomena’.

Figure 8. Post-packed phenomenon: flipping up the bracings (digital and physical models)

3.5. Calculation of critical state

Assuming cyclic symmetrical folding, the 3D structure’s motion can be written with a single 
geometrical parameter. Let that parameter be     . The critical equilibrium state corresponds to 
the zero value of tangent stiffness that is:

          16)

Introducing the function:

          (17)

mm�P�� �� ��

k++���/ qq 114�!�!5) , 4��!�5) * ++	 ,, --.%��/))

���
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          (18)

where

          (19)

Bringing the first two fractions in the parenthesis to common denominators and substituting 
equation (17) in the nominator:

Hence the critical values of      can be calculated from the equation:

          (20)

Substituting equation (17) in the last expression the critical height of the structure can be 
calculated from:

with
          (21)

Similar to the case of approximating the final stretching we can assume that both  
expressions can be neglected. In this case equation (21) can be simplified to:

          (22)

For a nicer and still rational approximation (Figure 9) of the square root of equation (21) the 
critical height per radius ratio can be approximated with the Taylor formula up to the first order 
around the point         =1 which gives the linear approximation: 

          (23)
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The constants    and    depend only on the angle    that is on n, the number of vertices of the 
polygon and can be calculated from the equation (21) and its derivative:

          (24)

The values for constants    and    are listed on Table 2 and plotted on Fig. 9.

Table 2.  Constants for linear approximation of critical height/radius ratio

Figure 9.  Constants for linear approximation of critical height/radius ratio

� � ���>�7Y , m�� m� u�7Y � 0003 � m�� m� u�7Y  

Constants for linear approximation of critical height/radius ratio 
n-gon a b

5 -0.1015 0.9362 
7 -0.0711 0.9624 
9 -0.0522 0.9739 
11 -0.0403 0.9802 
13 -0.0323 0.9843 
15 -0.0267 0.9870 
17 -0.0225 0.9890 
19 -0.0194 0.9905 

� 3 �

� 3
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Figure 10.  Approximation of critical height: critical height/critical radius ( ) in function of 
initial height/initial radius (              ), for pentagonal segment ―   exact solution with continuous line, 
approximation in accordance with equation (22) with dotted line, approximation in accordance with 

equation (23) with dashed line

Figure 11.  Approximation of critical height: critical height/critical radius ( ) in function 
of initial height/initial radius (              ), for 9-gonal segment  ―   exact solution with continuous line, 
approximation in accordance with equation (22) with dotted line, approximation in accordance with 

equation (23) with dashed line

It can be seen from the two diagrams shown on Fig. 10-11 (plotted for a pentagonal and a 
9-gonal element respectively), that depending on the actually analyzed geometry (that is, on  
and        ) in some cases it is the approximation described in equation (22) and in some cases it 
is the one described in equation (23) that approximates better the exact value. 

� � �
�
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�

�
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Both equations underestimate the exact value. However, for domains described in (10) the 
offered linear equation gives an acceptable and simple preliminary estimation of the critical 
height. 

The critical force from equations (16) (17) and (19) (21): 

          (25)

where

          (26)

On Fig. 12 equation (25) is plotted. It can be seen that considering only the domain given in 
(10) the critical force can be also estimated with a linear approximation (see Fig. 12). Linearizing 
with the help of the Taylor formula up to the first order around the point :

          (27)

The constants  and  depend only on the angle , that is, on the number of vertices of the 
polygon ( ), and can be calculated from equation (25) and its derivative:

          (28)

The values for constants  and  are listed and the error of the approximation at the boundaries of 
the analyzed domain are given in Table 3 and plotted on Fig. 13. To further facilitate preliminary 
design the critical packing force is plotted in Fig. 14 for different -gonal segments.

Figure 12.  Approximation for the critical force: critical force (  in function of initial height/initial 
radius ratio ( ), for pentagonal (on the left) and for 9-gonal segment (on the right) – exact 

solution with continuous line, linear approximation with dotted line (EA=100)
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Table 3. Constants for linear approximation of critical force and the error of approximation 
at the boundaries

Figure 13. Constants for linear approximation of critical force and the error of approximation 
at the boundaries

Figure 14: Critical force (  in function of the number of vertex of the polygon for 
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4. NUMERICAL ANALYSIS

4.1. The numerical model

The packing of the antiprismatic unit was simulated with non-linear finite element analysis 
calculated with FEAP. For the numerical model truss elements were used with constitutive model 
primary defined by logarithmic strain measure. 

Figure 15.  Comparison of different constitutive models and verifying numerical model and numerical 
results ― force-displacement diagram of antiprismatic deployable unit 

(pentagonal unit, 

The force-displacement diagram obtained with the numerical approach deviates from the 
one calculated from small strain analysis (Fig.15), especially in the larger strain domains, but 
the character of the force-displacement diagram is identical to analytical results. The force-
displacement diagrams were plotted with the two different constitutive models, as well.

Assuming logarithmic strains the diagram is plotted from:

          (29)

Assuming Green strains the diagram is plotted from:

          (30)

It can be seen that the deviation is only due to the different constitutive model, the 
numerical errors are acceptable. The packing sequence from the simulation is plotted 
in Fig. 16.

�+��/ � QX�+��/�� VZ[W!�+��/S! TUVW � Q\]�Q^�+��/_�� VZ[W!�+��/S! TUVW  

�+��/ � Q\]ic�+��/��c+��/SY��� VZ[W!�+��/S! TUVW  
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Figure 16.  Packing sequence of a pentagonal basic unit

The simulation of the basic unit was carried out with displacement control; the top nodes 
were proportionally displaced till the bottom nodes with incremental analysis.

4.2. Parameter analysis

The influence of the geometrical parameters is shown on Figs. 17-20. Fig. 17 shows the force-
displacement diagram in the case of different n-gonal antiprismatic basic units. It can be seen 
from the figure that the asymmetry of the diagram grows with increasing number of vertices. 
Fig. 18 is in good accordance with the analytical solution plotted in Fig. 1. Fig. 19 and 20 
analyze the influence of the  ratio on the force-displacement diagram and the packing force. 
From Fig. 19 it can be seen that, as the ratio grows, the asymmetry of the force-displacement 
diagram gets emphasized. Furthermore, Fig. 20 proves that the linear approximation deduced 
from analytical results (equation (27) and Fig. 12) is reliable.
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Figure 17.  Influence of geometrical configuration ― force-displacement diagram 
of basic unit in the case of different n-gons ( )

Figure 18 Influence of geometrical configuration ― packing force (maximal reaction 
force multiplied by the number of vertices) of basic unit in case of different -gons

( )
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Figure 19. Influence of geometrical configuration – force displacement 
diagram of basic unit in case of different  ratios

( )

Figure 20. Influence of geometrical configuration on the packing load in the case of
 different  ratios ( )

4.3. Influence of kinematical assumptions

The above investigations were carried out with the assumption of stiffened top and bottom 
polygons which corresponds to the offered deployable structure of Hegedűs. If these polygons 
are not replaced with stiffened plates but consists of only horizontal elastic bars the structure 
goes to a very different equilibrium path. (Fig. 21) 
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Without horizontally fixing the top nodes, the horizontal bars of the top polygon will be 
compressed and pushed through the middle polygon and finally by flapping up the rigid 
bracing bars finding back its original length with a pushed together shape.

Figure 21. Infulence of changing kinematical assumption ― fore-displacement 
diagram of non-stiffened antiprismatic unit, ( )

To avoid this phenomenon a contact element (‘gap’ element) has been added to the model. 
A penalty approach was used to enforce a restraint between the middle and the boundary 
polygons. The restraint force is governed by a penalty parameter and the distance in between 
the center points of the polygons. When the two nodes approach each other, the contact force 
increases, and keeps the polygons from intersecting. The force-displacement diagram in this 
case is plotted with green line in Fig. 21.

5. SUMMARY

The basic segment of a specific system, a deployable antiprismatic lattice structure has 
been herein investigated. The goal of this investigation was to ground further analysis and 
facilitate the preliminary design of the complex system built up from these basic building 
blocks. This cylindrical structure, derived from the well-known Yoshimura origami pattern and 
proposed by Hegedűs, is characterized by its pop-up deployment due to the energy accumulated 
from lengthening some bars during packing. Zero deployment-load corresponds both to the 
fully deployed and the compact configuration, the latter being an unstable equilibrium state 
corresponding to the maximal internal energy.

Numerical simulation of the packing was performed and the results were confirmed by 
analytical investigations.
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It was shown the structure undergoes instability phenomenon during packing. The force-
displacement diagram, the critical force and critical height of the mentioned structures were 
explicitly defined for linear constitutive model, and numerically analyzed for logarithmic 
constitutive model. For the antiprismatic pop-up system approximations were given for 
the following properties:

– the maximal lengthening of the bars of the middle polygon for complete packing;
– the critical segment-height;
– the critical packing force.

Numerical parameter analysis was carried out with non-linear finite element simulation to 
define the influence of the different geometrical and mechanical parameters on the characteristic 
of the force-displacement diagram by supposing logarithmical strains. The analytical results 
and the given approximations were confirmed with the analytical results.

It was shown that the asymmetry of the force-displacement diagram governing the intensity 
of the snapping of the global structure during packing depends on the number of the vertices of 
the polygons and on the ratio of the initial segment height and the radius of the polygons. By 
increasing the number of the vertices of the polygons or by increasing the ratio the asymmetry 
will be more significant. The critical force increases with the increment of vertices (first quadratic 
and then linear relationship can be observed), and linearly increases with the increment of the 
stiffness of the elastic bars. The critical force depends only on the height/radius ratio, but not 
on the size of the structure.

The paper mainly focuses on the general behavior of the basic element of the antiprismatic 
structure. The novelty of this paper is the determination of the exact force-displacement diagram 
of the basic segment of these deployable structures, enabling a profound parametric study and 
the formulation of approximations to its main characteristics. These characteristics of the force 
displacement diagram herein evaluated play an important role in the general packing behavior 
of the deployable mast built up from the analyzed building blocks and the given, very simple 
approximations facilitate the preliminary design and the verification of the numerical results.
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